CR-184005 TWR 50212 ### EVALUATION OF EA-934NA with 2.5% CAB-O-SIL FINAL REPORT June 1990 #### Prepared for: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812 Contract No. NAS8-30490 DR. No. 3-5 WBS.No. 4C102 P.O. Box 707, Brigham City, UT 84302-0707 (801) 863-3511 (NASA-CR-184005) VALUATION OF EA-934NA WITH 2.5 PERCENT CAR-O-SIL Final Perort (Thickol Corp.) 19 0 CSCL 11A N9U-27409 Unclas 63/27 0297562 FORM TC 4677 (REV 1-88) DOC NO. VOL. REV TWR-50212 TITLE Evaluation of EA-934NA with 2.5% Cab-O-Sil Final Report **JUNE 1990** Prepared by: Adhesive Materials and Processes Approved by: W. Poulter, Supervisor Adhesives and Materials Systems Integration Engineering G. L. Stephens, Manager Assembly and Packaging K. R. Eckhardt, Manager M&P Elastomers and Adhesives Thickol CORPORATION SPACE OPERATIONS PO Box 707 Brig am City UT 34302-0707 18011 863-3511 #### Contents | | SEC PAGE | | |----------|---|----| | EVISION | TWR-50212 | | | Distribu | tion | 17 | | 7. | Elongation of EA-934NA With 2.5 Percent Cab-O-Sil (2.0 in./min) | 16 | | 6. | Tangent Modulus of EA-934NA With 2.5 Percent Cab-O-Sil (2.0 in./min) | 15 | | 5. | Tensile Strength of EA-934NA With 2.5 Percent Cab-O-Sil (2.0 in./min) | 14 | | 4. | Lap Shear Strength of EA-934NA With 2.5 Percent Cab-O-Sil - Grit Blasted D6AC Steel Substrates | 13 | | 3. | Tensile Adhesion Bond Strength of EA-934NA with 2.5 Percent Cab-0-Sil - Cork to Rust-Oleum D6AC Steel | 12 | | 2. | Tensile Adhesion Bond Strength of EA-934NA with 2.5 Percent Cab-O-Sil - Rust-Oleum Coated D6AC Steel Substrates | 11 | | 1. | Tensile Adhesion Bond Strength of EA-934NA with 2.5 Percent Cab-O-Sil - Grit Blasted D6AC Steel Substrates | 10 | | | Figures | | | III. | Tensile Properties of EA-934NA with 2.5 Percent Cab-O-Sil. | 9 | | II. | Lap Shear Bond Strength of EA-934NA with 2.5 Percent Cab-O-Sil (Test Speed 0.05 in./min) | 8 | | I. | Tensile Adhesion Button Bond Strength of EA-934NA with 2.5 Percent Cab-O-Sil (Test Speed 0.05 in./min) | 6 | | | TABLES | | | 7.0 | Results | 5 | | 6.0 | Discussion | 3 | | 5.0 | Recommendation | 3 | | 4.0 | Conclusions | 2 | | 3.0 | Summary | 2 | | 2.0 | Objective | 2 | | 1.0 | Introduction | 2 | #### 1.0 INTRODUCTION Currently, Hysol adhesive EA-934NA is used to bond the Field Joint Protection System on the Shuttle rocket motors at Kennedy Space Center. However, due to processing problems, an adhesive with a higher viscosity is needed to alleviate these difficulties. One possible solution is to add Cab-0-Sil to the current adhesive. This study (being performed under ETP-0610) looks at the adhesive strength and bond strengths that can be obtained when 2.5% Cab-0-Sil is added to adhesive EA-934NA and tested over a range of test temperatures from -20° to 300°F. #### 2.0 OBJECTIVE To evaluate the tensile adhesion strength, lap shear strength and tensile properties that are obtained when 2.5% Cab-O-Sil is added to Hysol adhesive EA-934NA and is tested over a test temperature range of from -20° to 300°F. #### 3.0 <u>SUMMARY</u> Tensile adhesion button and lap shear specimens were bonded to D6AC steel and uniaxial tensile specimens (testing for strength, initial tangent modulus, elongation and Poisson's ratio) were prepared using Hysol adhesive EA-934NA with 2.5% Cab-0-Sil added. These specimens were tested at -20°, 20°, 75°, 100°, 125°, 150°, 200°, 250° and 300°F, respectively. Additional tensile adhesion button specimens bonding Rust-Oleum primed and painted D6AC steel to itself and to cork using adhesive EA-934NA with 2.5% Cab-0-Sil added were tested at 20°, 75°, 125°, 200° and 300°F, respectively. Results generally show decreasing strength values with increasing test temperatures. The bond strengths obtained using cork as a substrate were totally dependent on the cohesive strength of the cork. #### 4.0 <u>CONCLUSIONS</u> From the results obtained it can be concluded that strong bonds can be obtained when using adhesive EA-934NA with 2.5% Cab-O-Sil added. It can also be concluded that the bond to cork with this adhesive is stronger than the cork over the temperature range of -20° to 300°F tested. DOC NO TWR-50212 VOL #### 5.0 <u>RECOMMENDATION</u> It is recommended that Hysol adhesive EA-934NA with 2.5% Cab-O-Sil added be used to bond the redesigned Field Joint Protection System if other processing parameters of this adhesive are acceptable. #### 6.0 <u>DISCUSSION</u> D6AC steel tensile adhesion button specimens were grit blasted, bonded together using both a minimum bondline and 30-mil Teflon coated steel spacers to control the bondline when using adhesive EA-934NA with 2.5% Cab-O-Sil added. The specimens were then put under tension using shrink tape. The adhesive was then cured for seven days minimum at room temperature. The specimens (five per test temperature) were then tested at test temperatures of -20°, 20°, 75°, 100°, 125°, 150°, 200°, 250° and 300°F, respectively and at a test speed of 0.05 in./min. Other D6AC tensile adhesion button specimens were coated with Rust-Oleum's zinc rich primer and white paint and then cured for 12 hours at 300°F. The painted surface was lightly abraded, wiped with a methyl chloroform dampened Rymplecloth and then bonded to another Rust-Oleum painted button or a button to which cork had been bonded to using adhesive EA-934NA with 2.5% Cab-O-Sil added using both a minimum and 30-mil bondline. The specimens were then tested at test temperatures of -20°, 75°, 125°, 200° and 300°F, respectively and at a test speed of 0.05 in./min. For the lap shear specimens, D6AC steel panels 1/4-inch thick were grit blasted, bonded together with a minimum bondline using adhesive EA-934NA with 2.5% Cab-0-Sil added. Weights were applied to the panels during cure. The adhesive was then cured for seven days minimum at room temperature. The bonded panels were then cut into individual strips using the abrasive water jet and then machined to their final configuration. The specimens (five per test temperature) were then tested at test temperatures of -20°, 20°, 75°, 100°, 125°, 150°, 200°, 250° and 300°F, respectively and at a test speed of 0.05 in./min. For the uniaxial test specimens, a hesive EA-934NA with 2.5% Cab-0-Sil added was vacuum cast onco Teflon coated panels using 1/8-inch thick Teflon coated steel windows to control the final adhesive thickness. A second panel was then used to compress the adhesive to its final thickness. The adhesive panels were then cured for a minimum of seven days at room temperature. After cure the specimens were cut into strips, routered to their final configuration and the edges lightly sanded. The DOC NO TWR - 50212 VOL specimens (five per test temperature) were then tested at test temperatures of -20°, 20°, 75°, 100°, 125°, 150°, 200°, 250° and 300°F, respectively and at a test speed of 2.0 in./min. The specimens were tested for ultimate strength, initial tangent modulus, strain and Poisson's ratio. Poisson's ratio was not performed at the test temperatures of 200°F or higher due to equipment limitations. The tensile adhesion button test results as shown in Table I and graphically in Figures 1, 2, and 3 generally show decreasing bond strengths with increasing test temperature. However, the the bond strength at -20°F for a 30-mil bondline does show a slight decline compared to the data at 20°F due to the brittleness of the adhesive at lower test temperatures. The results show that the bond to the paint is also dependent on the strength of the paint itself and for the cork specimens is dependent only on the strength of the cork as the failure mode was 100% cohesive in the cork at all test temperatures. The lap shear results as shown in Table II and graphically in Figure 4 show the same general trend as for the 30-mil bondline in the tensile adhesion button results except a small rise in strength values at 200°F probably caused by experimental data variation. The uniaxial tensile test specimen data results are shown in Table III and graphically in Figure 5 for the tensile strength, Figure 6 for the initial tangent modulus and Figure 7 for the percent elongation at failure. The highest percent elongation is achieved at a test temperature of 150°F with lower percent elongation results at lower and higher test temperatures. The tensile data also show a drop in strength at -20°F when compared to 20°F due to the brittleness of the adhesive as occurred for the tensile adhesion and lap shear data for the bond to steel. The overall results suggest that the addition of 2.5% Cab-O-Sil to EA-934NA still results in an adhesive with high strength values and could be used on Field Joint Protection System assuming other processing requirements are achieved. DOC NO TWR - 50212 VOL #### 7.0 RESULTS The results for the tensile adhesion button data of D6AC steel to D6AC steel, Rust-Oleum primed and painted D6AC steel to Rust-Oleum primed and painted D6AC steel and cork with minimum and 30-mil bondlines when using adhesive EA-934NA with 2.5% Cab-O-Sil are shown in Table I. The results show the substrate, test temperature strength, coefficient of variance, number of specimens making up the results and the failure mode. The results are also shown graphically in Figures 1, 2, and 3. The results for the D6AC steel to D6AC steel lap shear specimens are shown in Table II and graphically in Figure 4. Results for the uniaxial tensile specimens shown in Table III include the test temperature, cross-head speed, strength, initial tangent modulus, strain, Poisson's ratio, coefficient of variance for each value and number of specimens making up the data. The results for the strength, modulus and elongation are also shown graphically in Figures 5, 6, and 7, respectively. DOC NO TWR - 50212 VOL ## TABLE I Tensile Adhesion Button Bond Strength of EA-934NA with 2.5% Cab-O-Sil (Test Speed 0.05 inches/minute) | Failure Mode | | 99% Coh in Adh. 1% Adh | Coh In Adh. | Coh in Adh, | in Adh, 34% | Coh in Adh, 178 | Coh in Adh, 518 | Coh in Adh, 38% | Coh in Adh, 10% | In Adh, 29% | 50% Coh Adh, 45% Adh Pnt | 5% Coh Primer | 148 Coh Adh, 498 Adh Pnt | 37% Coh Primer | 98% Coh Paint, | 2% Adh Paint/Primer | 97% Coh Paint | 3% Adh Paint/Primer | 87% Coh Pnt, 6% Prmr/D6AC | 4% Coh Prmr, 3% Adh Paint | 100% Coh Cork | 100% Coh Cork | 100% Coh Cork | | 100% Coh Cork | |----------------------|------------------|------------------------|-------------|-------------|-------------|-----------------|-----------------|-----------------|-----------------|-------------|--------------------------|---------------|--------------------------|----------------|----------------|---------------------|---------------|---------------------|---------------------------|---------------------------|--------------------|-------------------|---------------|-----------|---------------| | No.
<u>Tested</u> | | 5 | S | 2 | 5 | 2 | 5 | 5 | 2 | Z. | 5 | | 2 | | 5 | | 2 | | Ŋ | | 5 | 2 | 2 | 5 | S | | C.V. | | 5.1 | 4.2 | 3.3 | 9.9 | 1.9 | 4.4 | 0.9 | 4.4 | 8.5 | 1.0 | | 6.0 | | 6.3 | | 3.0 | | 7.8 | | 1.0 | 2.8 | 12.3 | 2.9 | 7.7 | | STRENGTH (ps1) | | 8,572 | 7,932 | 6,925 | 5,838 | 5,120 | 698'5 | 4,119 | 3,394 | 2,122 | 6,200 | | 4,590 | | 1,869 | | 720 | | 475 | | 344 | 193 | 86 | 79 | 87 | | Test
Temp. | | -20 | 20 | 75 | 100 | 125 | 150 | 200 | 250 | 300 | -20 | | 75 | | 125 | | 200 | | 300 | | | 75 | 125 | 200 | 300 | | SUBSTRATE | MINIMUM BONDLINE | Grit Blasted | D6AC Steel | | | | | | | | Rust-Oleum Coated | DoAC Steel | | | | | | | | | Cork to Rust-Oleum | Coated D6AC Steel | | | | FORM TC 7994-310 (REV 2-88) DOC NO TWR-50212 VOL 6 # TABLE I (CONT.) Tensile Adhesion Button Bond Strength of EA-934NA with 2.5% Cab-0-Sil (Test Speed 0.05 inches/minute) | Failure Mode | | 100% Coh in Adh | 100% Coh in Adh | 99% Coh in Adh, 1% Adh | 91% Coh in Adh, 9% Adh | 77% Coh in Adh, 23% Adh | 66% Coh in Adh, 34% Adh | 74% Coh in Adh, 26% Adh | 81% Coh in Adh. 19% Adh | 94% Coh in Adh, 6% Adh | 63% Coh Adh, 37% Coh Pnt | 53% Coh Adh, 47% Coh Pnt | 100% Coh in Paint | 100% Coh in Paint | 100% Coh in Paint | 100% Cch Cork | 100% Coh Cork | 100% Coh Cork | 100% Coh Cork | 100% Coh Cork | |----------------|-----------------|-----------------|-----------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|--------------------------|--------------------------|-------------------|-------------------|-------------------|--------------------|-------------------|---------------|---------------|---------------| | No.
Tested | | 5 | 2 | 2 | 2 | 2 | S | 5 | 2 | S | 5 | 5 | 2 | 5 | 5 | 5 | 2 | 5 | 5 | 5 | | C.V. | | 4.2 | 2.0 | 8.1 | 8.9 | 11.5 | 5.3 | 11.8 | 12.6 | 5.5 | 10.1 | 11.1 | 2.2 | 4.7 | 4.7 | 2.9 | 3.4 | 3.8 | 7.8 | 8.7 | | STRENGTH (psi) | | 7,079 | 7,366 | 6,951 | 5,872 | 3,902 | 3,685 | 3,337 | 2,976 | 1,679 | 5,801 | 4,975 | 2,559 | 862 | 531 | 454 | 217 | 127 | 7.1 | 51 | | Test
Temp. | | -20 | 20 | 75 | 100 | 125 | 150 | 200 | 250 | 300 | -20 | 75 | 125 | 200 | 300 | 1 -20 | | 125 | 200 | 300 | | SUBSTRATE | 30-MIL BONDLINE | Grit Blasted | D6AC Steel | | | | | | | | Rust-Oleum Coated | D6AC Steel | | | | Cork to Rust-Oleum | Coated D6AC Steel | | | | LWR No's.: 594546, 563379, 595606 REVISION FORM TC 7994-310 (REV 2-88) DOC NO TWR-50212 VOL SEC PAGE 7 ## TABLE II Lap Shear Bond Strength of EA-934NA with 2.5% Cab-O-Sil (Test Speed 0.05 inches/minute) | Failure Mode | 100% Adhesive 100% Adhesive 57% Coh in Adh, 43% Adh 74% Coh in Adh, 26% Adh 87% Coh in Adh, 12% Adh, 1% Void 49% Coh in Adh, 51% Adh 60% Coh in Adh, 40% Adh 12% Coh in Adh, 60% Adh 32% Coh in Adh, 68% Adh | | |----------------|--|--| | No.
Tested | <u>გიგი</u> გა | | | C.V. | 7.5
9.0
3.0
2.3
2.2
7.8
11.8 | | | STRENGTH (psi) | 5,891
6,085
5,794
4,800
3,883
3,012
3,251
2,467
1,616 | | | Test
Temp. | -20
20
75
100
125
150
200
250
300 | | | SUBSTRATE | Grit Blasted
D6AC Steel | | LWR No's.: 595609 REVISION TWR-50212 VOL DOC NO SEC PAGE TABLE III Tensile Properties of EA-934NA with 2.5% Cab-O-Sil | NO.
SPECIMENS
TESTED | 2 | S | 4 | S | S | 4 | 4 | 2 | ٣ | | |--------------------------------|--------|--------|-------|-------|-------|-------|-------|-------|-------|--| | C. C. | 14.0 | 20.9 | 10.3 | 15.1 | 19.3 | 0.9 | ; | I | I | | | POISSON'S
RATIO
(10-40%) | 0.334 | 0.341 | 0.367 | 0.361 | 0.295 | 0.292 | ! | l | 1 | | | C V. | 14.0 | 11.0 | 13.8 | 5.5 | 14.3 | 5.4 | 14.2 | 10.7 | 17.1 | | | STRAIN (8) | 1.66 | 1.84 | 2.41 | 2.25 | 2.16 | 10.47 | 4.34 | 3.37 | 3.22 | | | C.V. | 12.9 | 7.4 | 14.4 | 6.8 | 14.3 | 15.3 | 13.2 | 12.3 | 19.3 | | | MODULUS
(KSI) | 736 | 812 | 692 | 689 | 436 | 243 | 321 | 136 | 91 | | | C.V. | 3.7 | 0.9 | 1.2 | 4.4 | 6.8 | 2.7 | 5.1 | 10.6 | 4.6 | | | STRENGTH (PSI) | 10,190 | 10,580 | 9,790 | 8,190 | 4,260 | 4,680 | 4,550 | 2,800 | 2,330 | | | X-HEAD
SPEED
(IN./MIN.) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | | TEST
TEMPERATURE
(°F) | -20 | 20 | 75 | 100 | 125 | 150 | 200 | 250 | 300 | | | | | | | | | | | | | | LWR No.: 594550 REVISION ______ FORM TC 7994-310 (REV 2-88) | DOC NO. | TWR-5021 | 2 | vor | |---------|----------|------|-----| | SEC | | PAGE | 9 | Test Temperature (degrees F) Figure 1. Tensile Adhesion Bond Strength of EA-934NA With 2.5 % Cab-O-Sil (Grit Blasted D6AC Steel Substrates) | REVISION | TWR-50212 | | | | | | | |-----------------------------|-----------|------|-----|--|--|--|--| | | DOC NO. | | VOL | | | | | | FORM TC 7994-310 (REV 2-88) | SEC | PAGE | 10 | | | | | Test Temperature (degrees F) Figure 2. Tensile Adhesion Bond Strength of EA-934NA Wtih 2.5 % Cab-O-Sil (Rust-Oleum Coated D6AC Steel Substrates) | | TWR-50212 | | | | | | | |-----------------------------|-----------|-----|----|--|--|--|--| | REVISION | DOC NO | voi | L | | | | | | FORM TC 7994-310 (REV 2-88) | SEC | AGE | 11 | | | | | Test Temperature (degrees F) Figure 3. Tensile Adhesion Bond Strength of EA-934NA Wtih 2.5% Cab-O-Sil (Cork to Rust-Oleum Coated D6AC Steel) | | TWR-50212 | | | | | | | | |-----------------------------|-----------|------|-----|--|--|--|--|--| | REVISION | DOC NO | | VOL | | | | | | | FORM TC 7994-310 (REV 2-88) | SEC | PAGE | 12 | | | | | | Test Temperature (degrees F) Figure 4. Lap Shear Strength of EA-934NA With 2.5% Cab-0-Sil (Grit Blasted D6AC Steel Substrates) | | TWR-50212 | | | | | | | |-----------------------------|-----------|--------|--|--|--|--|--| | REVISION | DOC NO | VOL | | | | | | | FORM TC 7994-310 (REV 2-88) | SEC | AGE 13 | | | | | | Test Temperature (degrees F) Figure 5. Tensile Strength of EA-934NA With 2.5% Cab-O-Sil (2.0 In/Min) | | TWR-50212 | | | |-----------------------------|-----------|------|-------------| | REVISION | DOC NO | \ | VO L | | FORM TC 7994-310 (REV 2-88) | SEC | PAGE | 1./ | Test Temperature (degrees F) Figure 6. Tangent Modulus of EA-934NA With 2.5% Cab-0-Sil (2.0 In./Min) | | TWR - 50212 | | | | | | | | |-----------------------------|-------------|------|-----|--|--|--|--|--| | REVISION | DOC NO | | VOL | | | | | | | FORM TC 7994-310 (REV 2-88) | SEC | PAGE | 15 | | | | | | Test Temperature (degrees F) Figure 7. Elongation of EA-934NA With 2.5% Cab-O-Sil (2.0 In./Min) ## PAGE | PAGE | FORM TC 7994-310 (MEV 2-88) D | Distribution | <u>M/S</u> | |-------------------|------------| | C. W. Bown | E80 | | B. F. Bradford | E80 | | G. A. Caldwell | 243 | | K. R. Eckhardt | E80 | | R. S. Jensen | L62A | | L. W. Poulter | 243 | | L. E. Seidner | E80 | | G. L. Stephens | E66 | | C. W. Whitworth | E80 | | Technical Library | Q52A | | M&P File | E80 | REVISION ______ FORM TC 7994-310 (REV 2-88) DOC NO TWR - 50212 VOL SEC PAGE 1.0